Rust Workshop

Day 1

Why Rust?

performance
safety
correctness
productivity
portability

Day 1

Day 2

Language Basics 1

Language Basics 2

Day 3 Advanced Features 1

Day 4 Advanced Features 2

Day 5 The Rust Ecosystem

Day 6

Projects %’

Program

common programming concepts & ownership

structs, enums, modules, collections, error handling
generics, traits, lifetimes, closures, iterators

smart pointers, dynamic dispatch, async programming
libraries, documentation, patterns, CI/CD, project start

CLI tools, web APIs, python modules, LED matrix

THE RUST
PROGRAMMING
LANGUAGE

STEVE KLABNIK and CAROL NICHOLS,

https://doc.rust-lang.org/stable/book/
https://doc.rust-lang.org/stable/book/

About these slides

Although they aren’t meant as reference material...
Both the interactive version and PDF exports are available at:
senekor.github.io/rust-workshop

Using the interactive slides:
Hover over the bottom-left corner for controls.

https://senekor.github.io/rust-workshop

Language Basics 1

book chapters 3 & 4
common programming concepts

ownership

1 fn main() {
2 println!("Hello, world!");
3}

Variables

book chapter 3.1

Variable Declaration

let x = 5;

Variable Declaration

let x: 132 = 5;

10

Mutability

let x = 5;

X

6; // error: cannot assign twice to immutable variable

\Xs

11

let mut x =

X=F//

53

Mutability

12

Globals

// "copy-pasted" everywhere (like C's #define)
const THREE_HOURS_IN_SECONDS: u32 = 60 * 60 * 3;

13

Globals

// placed in static memory (text or data segment)
static EMBEDDED_TEXT_FILE: §str = include_str!("path/to/some/file.txt");

14

Scope

let x = 5;
{
let y = 6;

// x and y available
}
// only x available

15

Shadowing

let x: 132 = 5;

Shadowing

let x: 132 = 5;

let x: &str = "five";

Basic Types

book chapter 3.2

18

Integer Types

length signed
8-bit i8
16-bit i16
32-bit 132
64-bit i64
128-bit 1128
arch isize

unsigned

us

ulé

u32

ub4

ul2s

usize

19

Number Literals

Decimal

Hex

Octal

Binary

ASCII Byte

with type suffix

98_222

Oxff

Qo077

0b1111_0000

b'A'

57_164

20

Floating-point Types

|EEE-754

let x = 2.0; // default: 64-bit
let y: f32 = 3.0; // 32-bit

21

Booleans

let x = true;
let y: bool = false;

22

Characters

unicode, guaranteed 32-bit

// notice the single quotes
let x = 'a';

let y: char = 'H';

let heart_eyed_cat = ' ';

23

Tuples

let tup: (i32, f64, u8) = (500, 6.4, 1);

24

Tuples

let (x, y, z) = tup;

25

let a:

i32

Tuples

tup.o;

26

The Empty Tuple

also known as the "unit"

let rusty_void: () = println!("printing doesn't return anything");

Arrays

size known at compile time

let a: [i32; 5] = [1, 2, 3, 4, 5];

28

let a

Arrays

size known at compile time

= [3; 5]; // == [3) 3, 3, 3, 3]

29

let x

Arrays

size known at compile time

= a[o];

30

Functions

book chapter 3.3

31

Basic Function

fn main() {
another_function();

}

32

Parameters

print_labeled_measurement(5, 'h');

33

g > WO N R

Expressions

A block is an expression where the last expression
of the block becomes the value of the entire block.

let y =
let
X +

};

//y::

{
X = 3;
1 // <- note the lacking semicolon

34

Return Values

if x == i32::MAX {
return i32::MAX; // no overflow
}

35

Interlude: Macros

36

General

Rust macros are a meta-programming feature like the C preprocessor.
Unlike in C, macros operate on tokens instead of text.

Rust macros use very specific syntax, so you can identify them easily.

37

"function-like" macros

let name = "Joe";
let age = 36;
println!("My friend {} is {} years old.", name, age);

These macros are identified by the exclamation mark.

The tokens within the parentheses are the inputs to the macro.
(string literal, comma, identifier, comma, identifier)

The output of the macro is the actual code
necessary to print the formatted string.

38

"attribute-like" macros

#[my_attribute_macro]
fn add(a: i32, b: i32) -> i32 {
a+b

}

const PI: usize = 3 // close enough

These macros are identified by the #[] syntax.

The tokens of the item immediately after the macro are its input.
That includes the entire function definition of add ,
but NOT the definition of PI .

my_attribute_macro might output additional code that’s related
to add or even modify the function itself.
However, it cannot generate code based on PI ,
since it doesn’'t know about it.

39

Control Flow

book chapter 3.5

40

1f Expressions

no parentheses around condition, curly brackets mandatory

let number = 3;

let size = if number < 5 {
"small"

} else if number < 10 {
"big"

} else {
"very big"

};

The variable size will hold one of the three strings.

loop

loop {
println!("computer go brrr");

if done() {
break;

} else {
continue;

}

42

while Loops

while countdown != 0 {

43

for Loops

more details on day 3
let a = [10, 20, 30, 40, 50];

// ~.. is the range operator
for i in 0..a.len() {
let element = al[il;
println!("the value is: {}", element);

for element in a {
println!("the value is: {}", element);

44

Some Operators

some assignment variants exist (+

Comparison

Arithmetic

Boolean

Bitwise

Range

& | ~ ! (notilde!)

..= (integers and

=)

char)

45

Integer Conversions

as exists, it but has some footguns

// fallible
let x: u32 = 42_1§i.try_into().unwrap();

46

Ownership

book chapter 4.1

47

Memory Management

approach properties

manual fast & predictable, but unsafe 4 X
garbage-collection slow & unpredictable, but safe X
ownership fast, predictable, safe and expressive [4[74[74

48

C and C++

a short history of manual memory management

49

Double free

int *p = malloc(sizeof(int));
free(p);
free(p); // »

Use after free

int *p = malloc(sizeof(int));
free(p);
*p = 12; // &

50

Implicit ownership in C

some_t *foo(some_t #*p);

Is the function going to free the pointer, or do | have to?

Does the function only read from the pointer or does it write to it?
Can the return value alias the argument?

Where is the documentation?

Please let there be documentation...

51

C++

tools to express ownership

std::unique_ptr<some_t> foo(some_t const* p);

and destructors!

...but no compiler guarantees.

52

Rust

codify and enforce the rules of ownership

53

Ownership Rules

1. Every value has exactly one owner.

2. When the owner goes out of scope, the destructor is run.

54

Single Ownership

demo

55

fn main() {

// heap-allocated String
// VVVVVVVVVVVVVVVVVVVVV
let first_owner = String::from("hello");

let second_owner = first_owner;
println!("{:?}, world!", first_owner);

// AANAAAAAAAANAAN

// error: borrow of moved value

56

Scope and Destructors

demo

57

O 0O NO U1l & W IN R

R R R R R R RPB R RBRB
O O NO Ul » WN R O

// declaring a zero-sized struct
struct Foo;

// writing a custom destructor for demo-purposes
// (Rust-lingo: "implementing the Drop trait")
impl Drop for Foo {
fn drop(&mut self) {
println!("drop!")

}

}

fn main() {
let x = Foo;
{

let y = x; // What happens if you comment this line?
} // y goes out of scope

println!("Hello, world!");
} // x goes out of scope

58

Ownership and Functions

fn main() {
let x = Foo;
take_foo(x);
println!("Hello, world!");

}
fn take_foo(arg: Foo) {

}

What's the output of this program?

59

Ownership is expressive

file handles, mutexes etc.
ownership applies to all kinds of resources

fn foo(m: &Mutex<i32>, random_choice: bool) -> Option<MutexGuard<i32>> {
let guard: MutexGuard<i32> = m.lock().unwrap();

if random_choice {
Some(guard)

} else {
None

60

Limitations

fn calculate_length(s: String) -> (String, usize) {

let length = s.len(); // len() returns the length of a String
(s, length)

}
fn main() {
let s1 = String::from("hello");
let (s2, len) = calculate_length(sl);
println!("The length of '{}' is {}.", s2, len);
}

61

References and Borrowing

book chapter 4.2

62

What are references?

= basically, pointers with seat belts
= cannot be null

® guaranteed to point to valid memory

63

Syntax

let x = 42;
let r: §i32
let y: i32 =

&x;

*r;

64

Fixing the earlier example

fn calculate_length(s: &§String) -> usize {
s.len()
// s goes out of scope, but its destructor is not run.

}
fn main() {

let s1 = String::from("hello");

let len = calculate_length(&sl);

println!("The length of '{}' is {}.", s1, len);
}

65

Mutable References

let mut x = 42;
let r = &mut x;
*r = 43;

66

Mutable References

demo

67

fn main() {
let mut s = String::from("hello");

change(&mut s);
}

fn change(some_string: &mut String) {
some_string.push_str(", world");

}

68

Mutable references are exclusive

let mut x = 12;

let rl = &mut x;
let r2 = §mut x; // error
*rl = 13;

compiler says:

cannot borrow x as mutable more than once at a time

69

Mutable references are exclusive

let r2 = §mut x; // error

compiler says:

cannot borrow x as mutable more than once at a time

70

Mutable references are exclusive

let r2 = &x; // error

compiler says:

cannot borrow x as immutable because it is also borrowed as mutable

71

Dangling References

let r;

{
let s = String::from("hello");
r = §&s;

}
println!("{}", r); // error

compiler says:

s does not live long enough

72

Borrrowing Rules

1. At any given time, you can have either one mutable reference
or any number of immutable references.

2. References must always be valid.

73

The Sllce Type

oooooooooo

74

SlicesinC?

void print_slice(int *start, size_t len) {
for (size_t i = 0; i < len; i++) {
printf("%d ", start[il]);
}
}

void main() {
int numbers[5] = {1, 2, 3, 4, 5};
print_slice(numbers + 1, 3); // 2 3 4
print_slice(numbers + 3, 10); // »

Start pointer and length are disconnected,
the compiler cannot reason about memory safety.
- buffer overflow

75

Rust Slices

fn print_int_list(list: &§[i32]) {
for elem in list {
print!("{} ", elem);

}
}
fn main() {
let numbers: [i32; 5] = [1, 2, 3, 4, 51;
print_int_list(&numbers[1..4]1); // 2 3 4
print_int_list(&numbers[3..13]); // panic: index out of range
}

Rust slices store their length alongside the start pointer.
The full length of a slice is guaranteed valid memory.
- no buffer overflow

76

The String Slice

let owned = String::from("Hello, world!");
let s: &str = Sowned[3..9]; // "lo, wo"

// Range boundaries must be valid UTF-8 offsets!
let s: &str = &" "[1..];

computer says:

P

byte index 1 is not a char boundary; it is inside '@' (bytes 0...4) of @

77

Borrowing rules apply to slices

let mut owned = String::from("hello");

let s: &str = Sowned[2..];

owned.pop(); // error: cannot borrow as mutable
println!("{}", s);

78

String Literals

let greeting: &str = "Hello, world!";

Off-Topic: Vectors

needed for exercises
let v: Vec<f64> = Vec::new(); // create empty, elems of type f64
let mut v = vec![1, 2, 3]; // macro for "vector literals"

v.push(4);
assert_eq!(v.pop().unwrap(), 4); // “unwrap’ because “pop’ might return "nothing"

Practice

Ready your laptops!

I will quickly explain all the setup steps.

You'll receive step-by-step instructions in writing as well.

81

« > C

= O senekor / rust-exercises

<> Code (») Issues

= rust-exercises

I} Pull requests

Public template

Q B = https: /github.com/

(» Actions

3 Projects

(> Unwatch

1 -

Go to file

@ Security

% Fork 15

+

<> Code ~

|~ Insights £ Settings

Y7 Star 0

About

Use this template ~

82

rust-lang.org

@ R“St / /' Learn Playground Tools Governance

Using rustup (Recommended)

It looks like you're running macOS, Linux, or another Unix-like OS. To download Rustup and install Rust, run the fa
terminal, then follow the on-screen instructions. See "Other Installation Methods" if you are on Windows.

curl --proto '=https' --tlsvl.2 -sSf https://sh.rustup.xs | sh

component

rustup

cargo

rustc

rustdoc

rustfmt

clippy

rust-analyzer

Batteries included

purpose

toolchain manager

package manager

compiler

documentation generator

formatter

linter

LSP implementation

example

rustup update

cargo add my-fav-library

cargo run , cargo build

cargo doc --open

cargo fmt

cargo clippy

N/A

84

Ensure you have a linker

System install command
Debian-based sudo apt install gcc

MacOS xcode-select --install

85

Initialize, compile and run a Rust project

$ cargo new hello
Creating binary (application) “hello” package

$ cd hello
$ 1s --tree

— Cargo.toml
L— src

L— main.rs

$ cargo run
Hello, world!

86

Visual Studio Code Extensions

recommendations cover:

syntax-highlighting

autocomplete

diagnostics

debugging
= toml syntax-highlighting

87

[Settings X

rust-analyzer check command

User Workspace

v Extensions (3)

rust-analyzer (3)

Rust-analyzer » Cargo » Build Scripts: Override Command

Override the command rust-analyzer uses to run build scripts and build procedu
should therefore include --message-format=json or asimilar option.

If there are multiple linked projects/workspaces, this command is invoked for e
root (i.e., the folder containing the cargo.toml). This can be overwritten by cha
and

By default, a cargo invocation will be constructed for the configured targets and

cargo check

Rust-analyzer » Check: Command

Cargo command to use for cargo check.

clippy

Practice %

github.com/senekor/rust-exercises

89

https://github.com/senekor/rust-exercises
https://github.com/senekor/rust-exercises/blob/main/day_1/README.md#day-1

