Rust Workshop

Day 4

Recap of Day 3

Generics

fn my_unwrap<T>(maybe_val: Option<T>) -> T {
maybe_val.unwrap()

}

impl<T> Option<T> {
fn unwrap(self) -> T {

/...
}
}
enum Result<T, E> {
ok(T),
Err(E),

Traits + Bounds

trait Comparable {
fn is_greater_than(§self, other: &Self) -> bool;

fn is_less_than_or_equal(&self, other: &§Self) -> bool {
Iself.is_greater_than(other)

}

}
fn find_largest<T>(1list: &[T]) -> &T

where
T: Comparable,

{ /*%/}

Lifetime Annotations

// possible
fn longest<'a>(x: &§'a str, y: &'a str) -> &'a str {}

// recommended
fn longest(x: &str, y: &str) -> String {}

Closures
fn main() {
let x = 3;

let mut nums = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

nums.retain(|elem| elem % x == 0);

lterators

trait Iterator {
type Item;

fn next(&mut self) -> Option<Self::Item>;

}
fn main() {

let numbers = vec![1, 2, 3, 4, 51;

let mut iter = numbers.into_iter();

while let Some(num) = iter.next() { /**/ }
// equivalent:

for num in numbers { /**/ }

Advanced Features 2

book chapters 15, 16, 17 & async

= Smart Pointers
= Concurrency & Parallelism
= Dynamic Dispatch

= Asynchronous Programming

Smart Pointers

book chapter 15

What is a Smart Pointer?

Smart pointers are data structures that act like a pointer
but also have additional metadata and capabilities.

We've already seen them! Vec and String are smart pointers.

They store their length and capacity as metadata.
They have the capability to grow and shrink.

10

What does a smart pointer point to?

trait Deref {
type Target;

fn deref(&self) -> &§Self::Target;

What happens when I’'m done with a smart pointer?

trait Drop {
fn drop(&mut self);
}

11

Box

// pseudo-code for illustration
pub struct Box<T>(*mut T);

imp1l<T> Drop for Box<T> {
fn drop(&mut self) {
std::alloc::dealloc(self.0);
}

12

Recursive Types

enum List {
Node(i32, List), //
End,

}

enum List {
Node(i32, Box<List>),
End,

error:

infinite size

13

Using the Deref trait

fn main() {
let boxed_int = Box::new(5);
let reference: §i32 = &boxed_int;
let copy: i32 = xboxed_int;

14

Shared Ownership

enum List {
Node(i32, Rc<List>),
End,

}

use List::*;

fn main() {
let shared_node = Rc::new(Node(12, Rc::new(End)));
// ref count: 1
{
let other_node = Node(24, Rc::clone(&shared_node));
// ref count: 2 -

}
// ref count: 1
} // ref count: 0 (shared_node gets dropped)

15

Interior Mutability

#[derive(Default)]
struct NewsWebsite {
free_articles_read: RefCell<usize>,

}
impl NewsWebsite {

fn read_article(&self) {
if *RefCell::borrow(&self.free_articles_read) >= 2 {
panic!("You have used up your free articles quota!")

}
*RefCell::borrow_mut(&§self.free_articles_read) += 1;
}
}
fn main() {
let news_website = NewsWebsite::default();
news_website.read_article();
news_website.read_article();
news_website.read_article(); // panic! gotta buy a subscription...
}

16

Violating Borrowing Rules at Runtime

fn main() {

let x = RefCell::new(1);

let ri
let r2

RefCell: :borrow_mut(&x);
RefCell::borrow(&x); // panic!

(instead of compiler error)

17

Shared Ownership + Interior Mutability

fn main() {
let x: Rc<RefCell<i32>> = Rc::new(RefCell::new(1));

let ri
let r2

Rc::clone(&x);
Rc::clone(&x);

*RefCell: :borrow_mut(&ri) += 1;
*RefCell: :borrow_mut(&r2) += 1;

println!("{}", x.borrow()); // 3

18

Reference Cycle == Memory Leak

demo

19

O O NO U1l &> WIN B

N B R R R R R RRRBR
® OV 00O NO U »H» WN R OO

struct PrintWhenDropped(char);
impl Drop for PrintWhenDropped {
fn drop(&mut self) {
println!("drop called on {}!", self.0) }
}
struct GraphNode {
value: PrintWhenDropped,
neighbor: Option<Rc<RefCell<GraphNode>>>,
}
fn main() {
let a = Rc::new(RefCell::new(GraphNode {
value: PrintWhenDropped('a'),
neighbor: None,
}));
let b = Rc::new(RefCell::new(GraphNode {
value: PrintWhenDropped('b'),
neighbor: Some(Rc::clone(&a)),

1));
RefCell: :borrow_mut(&a).neighbor.replace(Rc::clone(&b)); // reference cycle

20

Summary

smart pointers

put data on the heap with Box
share ownership with Rc
allow interior mutability with RefCell

watch out for reference cycles

21

Concurrency and Parallelism

book chapter 16

22

Spawning Threads

demo

23

Message Passing

fn main() {
// mpsc: Multiple Producers, Single Consumer
let (sender, receiver) = mpsc::channel();

thread::spawn(move || {
for message in ["hi", "from", "the", "thread"] {
sender.send(message).unwrap();
thread::sleep(Duration: :from_secs(1));

}
});

let message = receiver.recv().unwrap();
println!("Got: {message}l");

for message in receiver {
println!("Got: {message}l");
}

24

Shared-State Concurrency

demo

25

fn main() {
let counter = Arc::new(Mutex::new(0));
let mut handles = vec![];

for _ in 0..10 {
let counter = Arc::clone(&counter);
let handle = thread::spawn(move || {
let mut num = counter.lock().unwrap();

*num += 1;

});
handles.push(handle);

}

for handle in handles {
handle.join().unwrap();

}
println!("Result: {}", *counter.lock().unwrap());

Send and Sync

e Types that can be sent (move ownership) across thread-boundaries are Send .
e Types where references to them can be sent across thread-boundaries are Sync .

Intuitively, they can be read by multiple threads at the same time.

Most normal types are both Send and Sync .
Rc is NEITHER Send NOR Sync.
RefCell IS Send, butitis NOT Sync .

Mutex IS Sync, even if its contained type is only Send .

Send and Sync are auto traits, meaning the compiler
implements them for you where appropriate.

27

Fearless Concurrency

With Rust, you can write concurrent programs

without having to be afraid of bugs like data races. #%

&

except...

Deadlocks! ®

28

Dynamic Dispatch

book chapter 17.2

29

Object-Oriented Programming

property supported in Rust? supporting feature
associate data and behavior V| methods
encapsulation 4 modules
polymorphism V| traits
inheritance X
dynamic dispatch V| ?

30

Dynamic Dispatch

demo

31

O 0O NO UGl &> WDN R

N NR R RRRRRRBRRR
R ® WO NOU P> WNR O

trait Animal {
fn make_sound(&self);
}
struct Dog;
impl Animal for Dog {
fn make_sound(&self) {
println!("woof!") }
}
struct Cat;
impl Animal for Cat {
fn make_sound(&self) {
println!("meow!") }
}
fn get_animals() -> Vec<&'static dyn Animal> {
vec![&Dog, &Dog, &Cat]

}
fn main() {
for animal in get_animals() {
animal.make_sound();
}
}

32

Asynchronous Programming

book chapter still being worked on!

33

Asynchronous Programming, or async for short,
IS a concurrent programming model.

For practical purposes, it's an alternative to OS threads.

34

Disadvantages of OS threads

A single thread has relatively large overhead, including its own stack.

Consequently, they are not well-suited for massive |O-bound workloads.

(e.g. high-traffic web servers)

Scheduling is done by the OS, implying the overhead of a context-switch.

Scheduling is preemptive, which is less efficient than cooperative.

35

Async by comparison

Essentially zero overhead, not even heap allocations.

Perfectly suited for massive |O-bound workloads.

Scheduling is cooperative and works without context-switches.

...but more difficult to usel!

36

Async hello world

demo

37

use tokio::time;

async fn do_stuff(name: &str) {
println!("{name:>5}: He...");
time::sleep(time: :Duration::from_secs(1)).await;
println!("{name:>5}: ...1lo0...");
time::sleep(time: :Duration::from_secs(1)).await;
println!("{name:>5}: ...world!");

}

#[tokio::main(worker_threads = 1)]

async fn main() {
let alice_task = tokio::spawn(do_stuff("Alice"));
do_stuff("Bob").await;
alice_task.await.unwrap();

38

Async & Embedded

use embassy_nrf::gpio::{AnyPin, Input, Level, Output, OutputDrive, Pin, Pull};
use embassy_time::{Duration, Timer};

// Declare async tasks
#[embassy_executor: :task]
async fn blink(pin: AnyPin) {
let mut led = Output::new(pin, Level::Low, OutputDrive::Standard);

loop {
// Timekeeping is globally available, no need to mess with hardware timers.
led.set_high();
Timer::after_millis(150).await;
led.set_low();
Timer::after_millis(150).await;

39

Recommended talk:

Async Rust in Embedded Systems with Embassy

Beat Async Rustin Embe...

R , L

Async Rust in Emhedded Systems
with Embassy

40

https://www.youtube.com/watch?v=H7NtzyP9q8E

Congratulations!

- - ___'. - a --'.
S —— S ——
——— -~ - ——
-~] F W e
LY b LY
y - 3>
-. r adh ’

You now have a solid grasp of all the tools
available in Rust.

It's time to start building stuff!

41

Outlook Day 5 & 6

It's all about practical skills now!

e libraries, APIs, documentation
e automated testing and deployment

e a variety of practice projects

42

Heads-up:
Bring your LED-Matrix!

Next week, will get hands on with practical projects.
Among other options, you can program the LED-Matrix in Rust!

43

Practice %

rust-exercises/day_4/README.md

44

https://github.com/senekor/rust-exercises/blob/main/day_4/README.md#day-4

