Rust Workshop

Day 5

The Rust Ecosystem

- Libraries & Documentation
- Idiomatic APIs
- Developer Tools
- Testing
- Continuous Integration & Delivery

Libraries & Documentation

- How to find and use libraries
- How to read their documentation

Finding Libraries

- 1. blessed.rs
- 2. lib.rs
- 3. asking the community
- 4. crates.io

Not in std

- random
- regex
- logging
- time
- http

Using Libraries

demo

Finding Documentation

docs.rs/rand

Idiomatic APIs

Why talk about APIs?

A Rust-API can look *very* different than a C-API.

Case Study #1 - itertools

docs.rs/itertools

Case Study #2 – serde

docs.rs/serde

Development Tools

Included with rustup

- toolchain version manager
- build tool
- package manager
- formatter
- linter
- documentation generator
- LSP

Beyond rustup → blessed.rs

- cross compilation
- dependency management & auditing
- snapshot testing
- benchmarking
- release automation
- and more...

FFI / Interop

Lots of great bindings generators, including but not limited to:

- C
- C++
- Python
- Node.js
- and more...

Testing

A function like this can be anywhere.

```
1 #[test]
2 fn program_is_correct() {
3    assert_eq!(2 + 2, 4, "math has stopped working");
4 }
```

It will be executed by cargo test.

Do your tests have some shared util code?

```
#[cfg(test)]
   mod tests {
       fn setup() {}
       fn teardown() {}
       #[test]
       fn program_is_correct() {
           setup();
           // ...
           teardown();
10
12 }
```

It is good practice to have a tests module.

The module is only compiled during testing, due to the #[cfg(test)] attribute.

You can return Result s from your tests.

```
1 #[test]
2 fn it_works() -> Result<(), String> {
3     if 2 + 2 == 4 {
        Ok(())
5     } else {
6        Err(String::from("two plus two does not equal four"))
7     }
8 }
```

As expected, 0k means the test passed, Err means it failed.

Test Organization

unit tests have access to your internals according to normal visibility rules

integration tests only have access to the public API of your library

Integration tests only work for libraries (lib.rs)!

→ It is common even for binaries to be split into main.rs and lib.rs, with main.rs being small and simple.

Documentation Tests

```
1  /// Increments a number by one.
2  ///
3  /// # Examples
4  ///
5  /// ```
6  /// assert_eq!(inc(42), 43);
7  /// ```
8  pub fn inc(x: i32) -> i32 {
9     x + 1
10 }
Examples
assert_eq!(inc(42), 43);
assert_eq!(inc(42), 43);
```

cargo test will run this example as a test!

Continuous Integration & Delivery

tutorial in → rust-exercises/day_4/README.md

Final Project 🚀

You learned how to write Rust code during the first three days and you had a healthy dose of practice.

Now, the final project is less about how to write Rust code and more about getting your Rust-based software into production.

What does production look like?

client	server	storage
CLI Python module web app	HTTP/REST-API WebSocket	file system SQL

Our final project is to create and ship one or a combination of these.

Simulating a Postal Service

This topic works well for many possible combinations of clients and servers.

basic, CLI-only example:

```
$ paekli-cli receive
I don't have any paekli for you! I'm sorry 
$ paekli-cli send --express "Ferris Plushie 
$ paekli-cli receive
{ "content": "Ferris Plushie ", "express": true }
```

Now imagine you send a paekli via CLI and it automatically arrives in the web app, pushed via websocket

Practice **Practice**

rust-exercises/day_5/README.md

Work on Projects

paekli-rs senekor.github.io/paekli-rs

LED-Matrix github.zhaw.ch/senk/led-matrix-rs-template